54 research outputs found

    Deceptive Fairness Attacks on Graphs via Meta Learning

    Full text link
    We study deceptive fairness attacks on graphs to answer the following question: How can we achieve poisoning attacks on a graph learning model to exacerbate the bias deceptively? We answer this question via a bi-level optimization problem and propose a meta learning-based framework named FATE. FATE is broadly applicable with respect to various fairness definitions and graph learning models, as well as arbitrary choices of manipulation operations. We further instantiate FATE to attack statistical parity and individual fairness on graph neural networks. We conduct extensive experimental evaluations on real-world datasets in the task of semi-supervised node classification. The experimental results demonstrate that FATE could amplify the bias of graph neural networks with or without fairness consideration while maintaining the utility on the downstream task. We hope this paper provides insights into the adversarial robustness of fair graph learning and can shed light on designing robust and fair graph learning in future studies.Comment: 23 pages, 11 table

    User-Controllable Recommendation via Counterfactual Retrospective and Prospective Explanations

    Full text link
    Modern recommender systems utilize users' historical behaviors to generate personalized recommendations. However, these systems often lack user controllability, leading to diminished user satisfaction and trust in the systems. Acknowledging the recent advancements in explainable recommender systems that enhance users' understanding of recommendation mechanisms, we propose leveraging these advancements to improve user controllability. In this paper, we present a user-controllable recommender system that seamlessly integrates explainability and controllability within a unified framework. By providing both retrospective and prospective explanations through counterfactual reasoning, users can customize their control over the system by interacting with these explanations. Furthermore, we introduce and assess two attributes of controllability in recommendation systems: the complexity of controllability and the accuracy of controllability. Experimental evaluations on MovieLens and Yelp datasets substantiate the effectiveness of our proposed framework. Additionally, our experiments demonstrate that offering users control options can potentially enhance recommendation accuracy in the future. Source code and data are available at \url{https://github.com/chrisjtan/ucr}.Comment: Accepted for presentation at 26th European Conference on Artificial Intelligence (ECAI2023

    Dynamic Graph Representation Learning via Graph Transformer Networks

    Full text link
    Dynamic graph representation learning is an important task with widespread applications. Previous methods on dynamic graph learning are usually sensitive to noisy graph information such as missing or spurious connections, which can yield degenerated performance and generalization. To overcome this challenge, we propose a Transformer-based dynamic graph learning method named Dynamic Graph Transformer (DGT) with spatial-temporal encoding to effectively learn graph topology and capture implicit links. To improve the generalization ability, we introduce two complementary self-supervised pre-training tasks and show that jointly optimizing the two pre-training tasks results in a smaller Bayesian error rate via an information-theoretic analysis. We also propose a temporal-union graph structure and a target-context node sampling strategy for efficient and scalable training. Extensive experiments on real-world datasets illustrate that DGT presents superior performance compared with several state-of-the-art baselines

    LLM-Rec: Personalized Recommendation via Prompting Large Language Models

    Full text link
    We investigate various prompting strategies for enhancing personalized recommendation performance with large language models (LLMs) through input augmentation. Our proposed approach, termed LLM-Rec, encompasses four distinct prompting strategies: (1) basic prompting, (2) recommendation-driven prompting, (3) engagement-guided prompting, and (4) recommendation-driven + engagement-guided prompting. Our empirical experiments show that incorporating the augmented input text generated by LLM leads to improved recommendation performance. Recommendation-driven and engagement-guided prompting strategies are found to elicit LLM's understanding of global and local item characteristics. This finding highlights the importance of leveraging diverse prompts and input augmentation techniques to enhance the recommendation capabilities with LLMs

    Deep Topology Classification: A New Approach for Massive Graph Classification

    Get PDF
    The classification of graphs is a key challenge within many scientific fields using graphs to represent data and is an active area of research. Graph classification can be critical in identifying and labelling unknown graphs within a dataset and has seen application across many scientific fields. Graph classification poses two distinct problems: the classification of elements within a graph and the classification of the entire graph. Whilst there is considerable work on the first problem, the efficient and accurate classification of massive graphs into one or more classes has, thus far, received less attention. In this paper we propose the Deep Topology Classification (DTC) approach for global graph classification. DTC extracts both global and vertex level topological features from a graph to create a highly discriminate representation in feature space. A deep feed-forward neural network is designed and trained to classify these graph feature vectors. This approach is shown to be over 99% accurate at discerning graph classes over two datasets. Additionally, it is shown to be more accurate than current state of the art approaches both in binary and multi-class graph classification tasks

    The LDBC Graphalytics Benchmark

    Full text link
    In this document, we describe LDBC Graphalytics, an industrial-grade benchmark for graph analysis platforms. The main goal of Graphalytics is to enable the fair and objective comparison of graph analysis platforms. Due to the diversity of bottlenecks and performance issues such platforms need to address, Graphalytics consists of a set of selected deterministic algorithms for full-graph analysis, standard graph datasets, synthetic dataset generators, and reference output for validation purposes. Its test harness produces deep metrics that quantify multiple kinds of systems scalability, weak and strong, and robustness, such as failures and performance variability. The benchmark also balances comprehensiveness with runtime necessary to obtain the deep metrics. The benchmark comes with open-source software for generating performance data, for validating algorithm results, for monitoring and sharing performance data, and for obtaining the final benchmark result as a standard performance report

    LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis on Parallel and Distributed Platforms

    Get PDF
    ABSTRACT In this paper we introduce LDBC Graphalytics, a new industrial-grade benchmark for graph analysis platforms. It consists of six deterministic algorithms, standard datasets, synthetic dataset generators, and reference output, that enable the objective comparison of graph analysis platforms. Its test harness produces deep metrics that quantify multiple kinds of system scalability, such as horizontal/vertical and weak/strong, and of robustness, such as failures and performance variability. The benchmark comes with open-source software for generating data and monitoring performance. We describe and analyze six implementations of the benchmark (three from the community, three from the industry), providing insights into the strengths and weaknesses of the platforms. Key to our contribution, vendors perform the tuning and benchmarking of their platforms

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore